skip to main content


Search for: All records

Creators/Authors contains: "Stewart, Frank J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Biddle, Jennifer F. (Ed.)
    ABSTRACT <p>Marine oxygen-deficient zones (ODZs) are portions of the ocean where intense nitrogen loss occurs primarily via denitrification and anammox. Despite many decades of study, the identity of the microbes that catalyze nitrogen loss in ODZs is still being elucidated. Intriguingly, high transcription of genes in the same family as the nitric oxide dismutase (<italic>nod</italic>) gene from Methylomirabilota has been reported in the anoxic core of ODZs. Here, we show that the most abundantly transcribed<italic>nod</italic>genes in the Eastern Tropical North Pacific ODZ belong to a new order (UBA11136) of Alphaproteobacteria<italic>,</italic>rather than Methylomirabilota as previously assumed. Gammaproteobacteria and Planctomycetia also transcribe<italic>nod</italic>, but at lower relative abundance than UBA11136 in the upper ODZ. The<italic>nod</italic>-transcribing Alphaproteobacteria likely use formaldehyde and formate as a source of electrons for aerobic respiration, with additional electrons possibly from sulfide oxidation. They also transcribe multiheme cytochrome (here named<italic>ptd</italic>) genes for a putative porin-cytochrome protein complex of unknown function, potentially involved in extracellular electron transfer. Molecular oxygen for aerobic respiration may originate from nitric oxide dismutation via cryptic oxygen cycling. Our results implicate Alphaproteobacteria order UBA11136 as a significant player in marine nitrogen loss and highlight their potential in one-carbon, nitrogen, and sulfur metabolism in ODZs.</p><sec><title>IMPORTANCE

    In marine oxygen-deficient zones (ODZs), microbes transform bioavailable nitrogen to gaseous nitrogen, with nitric oxide as a key intermediate. The Eastern Tropical North Pacific contains the world’s largest ODZ, but the identity of the microbes transforming nitric oxide remains unknown. Here, we show that highly transcribed nitric oxide dismutase (nod) genes belong to Alphaproteobacteria of the novel order UBA11136, which lacks cultivated isolates. These Alphaproteobacteria show evidence for aerobic respiration, using oxygen potentially sourced from nitric oxide dismutase, and possess a novel porin-cytochrome protein complex with unknown function. Gammaproteobacteria and Planctomycetia transcribenodat lower levels. Our results pinpoint the microbes mediating a key step in marine nitrogen loss and reveal an unexpected predicted metabolism for marine Alphaproteobacteria.

     
    more » « less
    Free, publicly-accessible full text available March 6, 2025
  2. Abstract

    Coral reefs are in global decline with coral diseases playing a significant role. This is especially true for Acroporid corals that represent ~25% of all Pacific coral species and generate much of the topographic complexity supporting reef biodiversity. Coral diseases are commonly sediment-associated and could be exacerbated by overharvest of sea cucumber detritivores that clean reef sediments and may suppress microbial pathogens as they feed. Here we show, via field manipulations in both French Polynesia and Palmyra Atoll, that historically overharvested sea cucumbers strongly suppress disease among corals in contact with benthic sediments. Sea cucumber removal increased tissue mortality ofAcropora pulchraby ~370% and colony mortality by ~1500%. Additionally, farmerfish that killAcropora pulchrabases to culture their algal gardens further suppress disease by separating corals from contact with the disease-causing sediment—functioning as mutualists rather than parasites despite killing coral bases. Historic overharvesting of sea cucumbers increases coral disease and threatens the persistence of tropical reefs. Enhancing sea cucumbers may enhance reef resilience by suppressing disease.

     
    more » « less
  3. Abstract

    Larval net-spinning caddisflies (Hydropsychidae) function as ecosystem engineers in streams where they construct protective retreats composed of organic and inorganic material affixed with silk filtration nets that alter streambed hydrology. We hypothesized that hydropsychid bio-structures (retreats, nets) are microhabitats for microbes with oxygen-sensitive metabolisms, and therefore increase the metabolic heterogeneity of streambed microbial assemblages. Metagenomic and 16 S rRNA gene amplicon analysis of samples from a montane stream (Cherry Creek, Montana, USA) revealed that microbiomes of caddisfly bio-structures are taxonomically and functionally distinct from those of the immediately adjacent rock biofilm (~2 cm distant) and enriched in microbial taxa with established roles in denitrification, nitrification, and methane production. Genes for denitrification, high oxygen affinity terminal oxidases, hydrogenases, oxidative dissimilatory sulfite reductases, and complete ammonia oxidation are significantly enriched in caddisfly bio-structures. The results suggest a novel ecosystem engineering effect of caddisflies through the creation of low-oxygen, denitrifier-enriched niches in the stream microbiome. Facilitation of metabolic diversity in streambeds may be a largely unrecognized mechanism by which caddisflies alter whole-stream biogeochemistry.

     
    more » « less
  4. Raina, Jean-Baptiste (Ed.)
    ABSTRACT Nutrient availability can significantly influence microbial genomic and proteomic streamlining, for example, by selecting for lower nitrogen to carbon ratios. Oligotrophic open ocean microbes have streamlined genomic nitrogen requirements relative to those of their counterparts in nutrient-rich coastal waters. However, steep gradients in nutrient availability occur at meter-level, and even micron-level, spatial scales. It is unclear whether such gradients also structure genomic and proteomic stoichiometry. Focusing on the eastern tropical North Pacific oxygen minimum zone (OMZ), we use comparative metagenomics to examine how nitrogen availability shapes microbial and viral genome properties along the vertical gradient across the OMZ and between two size fractions, distinguishing free-living microbes versus particle-associated microbes. We find a substantial increase in the nitrogen content of encoded proteins in particle-associated over free-living bacteria and archaea across nitrogen availability regimes over depth. Within each size fraction, we find that bacterial and viral genomic nitrogen tends to increase with increasing nitrate concentrations with depth. In contrast to cellular genes, the nitrogen content of virus proteins does not differ between size fractions. We identified arginine as a key amino acid in the modulation of the C:N ratios of core genes for bacteria, archaea, and viruses. Functional analysis reveals that particle-associated bacterial metagenomes are enriched for genes that are involved in arginine metabolism and organic nitrogen compound catabolism. Our results are consistent with nitrogen streamlining in both cellular and viral genomes on spatial scales of meters to microns. These effects are similar in magnitude to those previously reported across scales of thousands of kilometers. IMPORTANCE The genomes of marine microbes can be shaped by nutrient cycles, with ocean-scale gradients in nitrogen availability being known to influence microbial amino acid usage. It is unclear, however, how genomic properties are shaped by nutrient changes over much smaller spatial scales, for example, along the vertical transition into oxygen minimum zones (OMZs) or from the exterior to the interior of detrital particles. Here, we measure protein nitrogen usage by marine bacteria, archaea, and viruses by using metagenomes from the nitracline of the eastern tropical North Pacific OMZ, including both particle-associated and nonassociated biomass. Our results show higher genomic and proteomic nitrogen content in particle-associated microbes and at depths with higher nitrogen availability for cellular and viral genomes. This discovery suggests that stoichiometry influences microbial and viral evolution across multiple scales, including the micrometer to millimeter scale associated with particle-associated versus free-living lifestyles. 
    more » « less
    Free, publicly-accessible full text available April 27, 2024
  5. Abstract

    Microbial communities in oxygen minimum zones (OMZs) are known to have significant impacts on global biogeochemical cycles, but viral influence on microbial processes in these regions are much less studied. Here we provide baseline ecological patterns using microscopy and viral metagenomics from the Eastern Tropical North Pacific (ETNP) OMZ region that enhance our understanding of viruses in these climate-critical systems. While extracellular viral abundance decreased below the oxycline, viral diversity and lytic infection frequency remained high within the OMZ, demonstrating that viral influences on microbial communities were still substantial without the detectable presence of oxygen. Viral community composition was strongly related to oxygen concentration, with viral populations in low-oxygen portions of the water column being distinct from their surface layer counterparts. However, this divergence was not accompanied by the expected differences in viral-encoded auxiliary metabolic genes (AMGs) relating to nitrogen and sulfur metabolisms that are known to be performed by microbial communities in these low-oxygen and anoxic regions. Instead, several abundant AMGs were identified in the oxycline and OMZ that may modulate host responses to low-oxygen stress. We hypothesize that this is due to selection for viral-encoded genes that influence host survivability rather than modulating host metabolic reactions within the ETNP OMZ. Together, this study shows that viruses are not only diverse throughout the water column in the ETNP, including the OMZ, but their infection of microorganisms has the potential to alter host physiological state within these biogeochemically important regions of the ocean.

     
    more » « less
  6. null (Ed.)
  7. ABSTRACT Synechococcus spp. are unicellular cyanobacteria that are globally distributed and are important primary producers in marine coastal environments. Here, we report the complete genome sequence of Synechococcus sp. strain WH 8101 and identify genomic islands that may play a role in virus-host interactions. 
    more » « less
  8. ABSTRACT Sideroxydans sp. strain CL21 is an aerobic Fe(II)-oxidizing bacterium isolated from peat sediment from the Fe-rich, moderately acidic Schlöppnerbrunnen fen (northern Bavaria, Germany). Here, we report the draft genome sequence of strain CL21, highlighting genes involved in Fe(II), sulfur, and H 2 oxidation. 
    more » « less
  9. ABSTRACT The late Pleistocene Ice Complex (also known as Yedoma) encompasses ice-rich permafrost formed when alluvial and/or aeolian sediments accumulated under cold climatic conditions. Three metagenomes obtained from Yedoma deposits continually frozen for periods up to 60,000 years are reported here. 
    more » « less
  10. null (Ed.)
    ABSTRACT Microbiology Resource Announcements (MRA) provides peer-reviewed announcements of scientific resources for the microbial research community. We describe the best practices for writing an announcement that ensures that these publications are truly useful resources. Adhering to these best practices can lead to successful publication without the need for extensive revisions. 
    more » « less